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Abstract
Variational Autoencoders (VAEs) [1] have garnered consider-
able attention as powerful generative models leveraging deep
learning for effective data compression and synthesis. Draw-
ing inspiration from the robust optimization technique Con-
ditional Value at Risk (CVaR) [2], which is witnessing esca-
lating adoption in deep learning model training paradigms [3]
[4], this paper introduces a novel class of Risk-Aware Vari-
ational Autoencoders (RA-VAEs). The aim is to optimize
these RA-VAEs for either risk-seeking (best-case) or risk-averse
(worst-case) scenarios. To accomplish this, we propose batch
risk-awareness and subsampling risk-awareness, two innova-
tive strategies designed to bias the reconstruction loss compo-
nent, −Eq(z|x)[log p(x | z)], in the VAE’s training objective
towards the worst or best-case losses. Through experiments on
the MNIST [5] and Fashion-MNIST [6] datasets, batch risk-
awareness not only succeeds in establishing a lower bound for
the worst-case performance but also enhances overall model
performance by serving as a regularization mechanism. Al-
though some model specifications did not yield as promising
results, they exhibited expected tail behaviors, thereby validat-
ing the concept and laying the groundwork for future research.
Index Terms: unsupervised learning, variational autoencoder,
robust optimization

1. Background
Variational Autoencoder (VAE) is a type of generative model
that uses deep learning techniques to learn a compressed rep-
resentation of data, while also being able to generate new data
that resembles the original input. The objective function of a
VAE consists of two components: the reconstruction loss and
the Kullback-Leibler (KL) loss. While the KL loss acts as a
regularizer that shapes the latent distribution towards a stan-
dard Gaussian, the reconstruction loss measures how well the
decoder can recreate the original input from the encoded latent
variable and is of main interest. In this paper, we consider eval-
uating a VAE model on a test mini-batch x1, ..., xN ∈ Rd, and
obtaining corresponding losses 1 l1, ..., lN ∈ R. The VAE’s
best/worst-case performances on this mini-batch, parameterized
by a parameter ϵ, refer to the top/bottom ϵ fraction of losses in
terms of magnitude. We can define the sets

Lbest(x1, ..., xN ; ϵ) = {li | i = 1, ..., N, li < Tϵ} (1)
Lworst(x1, ..., xN ; ϵ) = {li | i = 1, ..., N, li > T1−ϵ} (2)

where the threshold value Tϵ is the ϵ quantile of all losses.
Obviously, taking the average of Lbest and Lworst gives a
measure of ”how good/bad in general can the best/worst-cases
be” for the subset of best/worst performing data points. Fi-
nally, if the above evaluations are applied to every minibatch

1The loss metric we used in evaluating the model is consistent with
the metric in reconstruction loss at training time, which in turn depends
on assumptions on the form of p(x | z).

of a test dataset, we obtain an empirical distribution (mean and
std) of the VAE’s tail behaviors (overall best/worst-case perfor-
mances).

The above definition is closely related to the concept of
Conditional Value at Risk (CVaR). Also known as Expected
Shortfall, CVaR is a risk measure first introduced in quantita-
tive finance to handle risk-averse decision-making. CVaR mea-
sures the expected loss in the worst-case scenarios. Specifi-
cally, it is defined as the expected value of the loss given that
the loss is beyond a certain threshold, which can be approxi-
mated through the Monte Carlo estimator, i.e. the average of
elements in Lworst(x1, ..., xN ; ϵ). We can similarly define a
risk-seeking metric as the expected value of the loss for loss
below a certain threshold. Thus, in the following parts, CVaR
refers to both the risk-seeking and risk-averse measures if not
specified otherwise.

VAE has been applied to various scenarios where the
best/worst-case performances are highly valued. For instance,
when cherry-picking the best images out of an array of gener-
ated outputs, we might hope for optimizing the best results we
can get; in situations where the consequence of a very bad re-
construction/generation is expensive, a safety net lower bound-
ing the loss is desired. The vanilla VAE would suffer from the
”expectation problem”: the mismatch between its training ob-
jective of optimizing expectations (average reconstruction loss)
and the real objective of maximizing best/worst-case perfor-
mances. In section 2, we propose two mechanisms to mitigate
such mismatch by introducing risk-awareness into the training
reconstruction loss.

1.1. Vanilla VAE

The vanilla VAE assumes the following model:

Figure 1: Variational Autoencoder

The weights of the networks are fitted by maximizing the
evidence lower bound, defined as

−KL(q(z | x) || p(z)) + Eq(z|x)[log p(x | z)] (3)

2. Risk-Aware VAE
2.1. Batch Risk-awareness

VAE is usually trained using mini-batch gradient descent of
batch size N ; we also assume that for each data point xi, only
B = 1 subsampling is done. The reconstruction loss of xi is
then approximated by a stochastic estimator

−Eq(z|xi)[log p(xi | z))] ≈ − log p(xi | zi) (4)
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Figure 2: Model pipeline for RA-VAE with batch risk-awareness
(risk-averse). It is identical with a vanilla VAE until filtering the
individual losses l1, ..., ln based on threshold Tϵ, and finally
calculate the risk-averse average batch rec loss based on the
filtered values.

and the RHS expression can be written as li = − log p(xi |
zi) = L(xi, x̂i) for some loss L based on p(x | z)’s assumption
(e.g. a Gaussian assumption corresponds to L being MSE loss).
In vanilla mini-batch GD, the expected (average) reconstruction
loss for the mini-batch is calculated as

l(x1, ..., xN ) =
1

N

N∑
i=1

li (5)

Applying CVaR’s idea of considering a conditional expectation,
we can define the risk-averse and risk-seeking average recon-
struction loss

laverse(x1, ..., xN ; ϵ) =
1

Na

N∑
i=1

li1{li > T1−ϵ} (6)

lseeking(x1, ..., xN ; ϵ) =
1

Ns

N∑
i=1

li1{li < Tϵ} (7)

respectively, where Na =
∑

i 1{li > Tϵ}, Ns =
∑

i 1{li <
Tϵ}, and the threshold Tϵ is the ϵ quantile of losses l1, ..., lN .

The risk-averse loss only averages over the worst-case indi-
vidual losses above the threshold Tϵ, thus it is aligned with the
real objective of optimizing the worst-case performance in risk-
averse problems. Similarly, the risk-seeking loss is designed to
focus on evaluating the best-performing samples.

It is also worth noting that Tϵ’s dependency on the losses
introduces an extra source of randomness. In practice, we can
stabilize and smooth Tϵ by running an exponential moving av-
erage with values calculated in previous minibatches [7].

2.2. Subsampling Risk-Awareness

An alternative way to introduce risk-awareness is through sub-
sampling. That is, instead of doing only one subsample per data
point xi as usual, B > 1 subsamples are drawn. Now equation
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Figure 3: Model pipeline for RA-VAE with subsampling risk-
awareness (risk-averse). When subsampling B times, we have
loss lij between each data point xi and its subsample x̂ij . We
then filter these losses based on threshold Tϵ and bias the mean
subsample reconstruction loss towards the filtered values.

(4) can be more accurately approximated by

−Eq(z|xi)[log p(xi | z))] ≈ − 1

B

B∑
j=1

log p(xi | zij) (8)

we then define lij = − log p(xi | zij) = L(xi, x̂ij), which
is a loss function between data xi and its jth subsample. For
this expectation, we can again apply the idea of risk-awareness
to construct the risk-averse and risk-seeking reconstruction loss
for subsampling

laverse(x1, ..., xN ; ϵ) =
1

Ni,a

N∑
j=1

lij1{lij > T1−ϵ} (9)

lseeking(x1, ..., xN ; ϵ) =
1

Ni,s

N∑
j=1

lij1{lij < Tϵ} (10)

where Ni,a =
∑

j 1{lij > Tϵ}, Ni,s =
∑

j 1{lij < Tϵ}, and
the threshold Tϵ is the ϵ quantile of losses. The above process
is repeated for every data point xi in a minibatch.

3. Experiments
In this project, we conducted experiments for both risk-seeking
and risk-averse VAE with different hyperparameters including:
batch sizes, batch or subsampling risk-awareness and Tϵ. To
test for the effectivenss of risk-awareness, comparisons were
made on a before and after basis: a vanilla VAE is compared
with a RA-VAE where the only modification is the implemen-
tation of reconstruction loss. The data sets used are MNIST and
Fashion-MNIST. Experiments were run on Google Colab and
our personal computers.

3.1. Data and implementation

For MNIST, the training set consists of 48,000 samples, the val-
idation set consists of 12,000 samples and the test set consists of
10,000 samples. Similarly for Fashion-MNIST, the sizes for the



training set, validation set and test set are 48,000, 12,000 and
10,000 respectively. Batch size is set to 256 across all reported
experiments. The entire project was implemented in PyTorch.

3.2. Choice of evaluation metric

The Inception Score (IS) [8] and Fréchet inception distance
(FID) [9] are popular metrics for evaluating the quality of gen-
erated images. Even though these qualities might correlate
well with human judgement empirically, as Barratt and Sharma
pointed out, using these metrics on data sets that are not Ima-
geNet is a common pitfall [10]. Both IS and FID make use of
the Inception model, which was trained on the ImageNet data
set, to extract features from the generated images. So, using
these metrics for our analysis requires some fine tuning of the
Inception model, which may not be appropriate given the avail-
able computation resources and time constraint.

Xu et al. have shown that the 1-Nearest Neighbor classi-
fier and Kernel Maximum Mean Discrepancy are good sample-
based metrics for evaluating generated image qualities [11].
However, our project set out to show that RA-VAEs could
achieve better extreme case performances. For example, a risk-
seeking model might allow us to generate a few high quality
images while sacrificing the average-case quality. Since we are
interested in comparing the extreme case performances instead
of batch-wise average performances, these metrics are not well-
suited for our goals.

Gu et al. pointed out that a possible way to evaluate the
quality of a single image is to train a Gaussian mixture model
(GMM) on the real images and assess the probability of observ-
ing the generated images given the trained GMM,

p(x | λ) =
M∑
i=1

wig(X | µi,Σi), (11)

where wi is the mixture weights and g(X | µi,Σi) is the com-
ponent Gaussian densities [12]. We notice that the form of this
evaluation metric is in fact similar to VAE’s reconstruction loss.

As a result, we decided on using the reconstruction loss and
human evaluation, which are both easy to implement and well-
defined for image by image comparisons.

3.3. Reconstruction loss

With an evaluation metric in mind, we begin by analyzing the
reconstruction loss. In this section, we would like to highlight
some interesting findings with risk-averse models. With these
models, the worst case performances between the vanilla model
and the risk-averse model are compared. That is, we mea-
sure the reconstruction loss by considering the worst performing
losses on each batch. Figure 4 displays the effects of batch risk-
averseness on the MNIST data set. We note that the results we
got from subsampling risk-averseness were qualitatively simi-
lar. Each plot in Figure 4 corresponds to a specific loss thresh-
old Tϵ that was used when risk-averse VAE was trained. On the
x-axis, we have the percentages of worst performing losses con-
sidered at evaluation time, while the y-axis represents the mean
squared validation error. The blue dots represent the averages
of the worst losses for the vanilla model. And the orange dots
represent the averages for the risk-averse model. The error bars
indicate one standard deviation of the losses.

Overall, risk-averse VAE consistently outperforms the
vanilla VAE in terms of worst-case performance, except in sce-
narios where only a small fraction of the data was used dur-
ing training. As we increase the threshold parameter ϵ to 0.5,

Figure 4: Reconstruction loss as measured by the worst losses.
The models compared are the vanilla VAE (in blue) and the risk-
averse VAE (in orange) with batch risk-awareness. Each plot
above corresponds to a specific loss threshold Tϵ used during
training. The x-axis’s are the percentages of worst performing
losses used at evaluation time. The y-axis’s are mean squared
validation error on the MNIST data set.



the risk averse VAE seems to demonstrate dominance over the
vanilla model. On the other hand, for risk-seeking VAE, al-
though it also exhibits tail behavior where the model does best
on select samples, it did not get as impressive results as risk-
averse VAE did. A possible explanation for this observation is
that the risk-averse VAE was able to better learn by focusing on
the most difficult images while risk-seeking VAE could not do
the same by focusing on the easiest images.

3.4. Reconstructing distorted images

The previous experiment appears to show that batch risk-averse
VAE could outperform the vanilla VAE with an appropriate
Tϵ. Since reconstruction loss may not be perfectly correlated
with the quality of reconstructed images, we further tested risk-
averse VAE’s ability in reconstructing images by visualization.
Figure 5 reports some results. The images are taken from the
Fashion-MNIST data set and distorted with an elastic transfor-
mation. The resulting images still look realistic enough to be
something that the model might encounter in practice. We show
the results on these images since they are more challenging than
MNIST. When the model was tested on MNIST, we observed
more subtle differences. On Figure 5, the first two images on
each row are the original and distorted images. The third im-
age is the reconstruction by vanilla VAE and the rest are recon-
struction by the risk averse VAE with different Tϵ. Again, we
observe that except when ϵ is too small, risk averse VAE seems
to demonstrate an ability to produce sharper reconstructions.

Figure 5: First row: reconstructed images of a high-heeled
shoe. Second row: reconstructed images of a bag. Third row:
reconstructed images of a sandal. Fourth row: reconstructed
images of a boot. From left to right: the input image, the dis-
torted input image, reconstruction of the distorted image by the
vanilla model, reconstruction of the distorted image by the risk
averse VAE with ϵ = 0.05, 0.1, 0.2, 0.5.

3.5. Downstream classification

Given the results of the previous experiments, a natural ques-
tion to ask is why is the risk-averse model showing better gen-
eralization performance. One hypothesis is that the risk-averse
model was able to better learn an embedding of the images that
allows it to do well even on distorted images. To test this hy-
pothesis, we tested the models’ performance on a downstream
classification task. The MNIST data set was used for this ex-
periment. A logistic regression classifier was trained on the
models’ extracted embeddings of the training images and evalu-
ated on the extracted embeddings of the validation images. The
RA-VAE’s were trained with subsampling risk-awareness and
ϵ1 = 0.05, ϵ2 = 0.1 and ϵ3 = 0.2. Table 1 reports the results

of the experiment. Comparing the performance of risk-averse
VAE with the vanilla model, we observe that the risk-averse
model could not achieve as good performance while the risk-
seeking models achieved similar performance. These numbers
seem to suggest that the encoder part of risk-averse models may
not be the suitable for classification tasks. Rather, it’s the whole
model pipeline that is leading to the promising results observed
in previous experiments.

Model Error Rate
Vanilla VAE 0.146
Risk Averse VAE (ϵ = 0.05) 0.515
Risk Averse VAE (ϵ = 0.1) 0.494
Risk Averse VAE (ϵ = 0.2) 0.451
Risk Seeking VAE (ϵ = 0.05) 0.149
Risk Seeking VAE (ϵ = 0.1) 0.146
Risk Seeking VAE (ϵ = 0.2) 0.148

Table 1: Downstream classification performance on the MNIST
data set using different RA-VAE models.

4. Conclusions
We have successfully demonstrated the effectiveness of a batch
risk-averse VAE. This success suggests that with fine-tuning
of ϵ and other training configurations, the risk-averse VAE can
function as a regularization mechanism.

While some models, such as the batch risk-seeking VAE,
have not generated particularly remarkable results, they have
still displayed anticipated tail behaviors. Given that the risk-
seeking VAE has performance comparable to the vanilla VAE
in downstream classification tasks, further exploration of areas
where risk-seeking VAE excels would be a productive avenue
for future research.

Some promising next steps of this research topic include:

• Simultaneously incorporate both batch risk-awareness
and subsampling risk-awareness into VAE. This en-
deavor will likely necessitate meticulous hyperparame-
ter tuning across an extensive range, allowing for more
comprehensive model optimization.

• Using alternative thresholds other than Tϵ for the condi-
tional expectation, or utilizing different smoothing meth-
ods to stabilize the existing threshold.

• Evaluating performance in more downstream tasks such
as clustering and image generation.
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