
Hierachical Bayesian Symbolic Regression

Joshua Hewson1 , Sida Li2 , Other Authors
1Carney Brain Institute, Brown University

2Statistics Department, The University of Chicago
joshua hewson@brown.edu, listar2000@uchicago.edu

Abstract
These are some initial write-ups for a hierarchical
bayesian symbolic regression algorithm. Please ig-
nore the rest of this abstract.

1 Notations
1.1 Dataset
Symbolic Regression (SR) is a task that aims to find the
best closed-form mathematical expression that fits in a given
dataset D = {X,y}, where the covariates are packed into
X = [x1, ...,xn]

T as a n× k matrix with the ith row xi con-
taining the k features of the ith datapoint and the response
y = [y1, ..., yn]

T ∈ Rn. We further denote x
(i)
j as the jth

covariate of the ith data-point.

1.2 Token Library
Since SR is concerned with finding closed-form, analytical
solutions, there need to be some limitations on the search
space of valid expressions. A token library, denoted by L,
is a set that includes all the ”tokens”, i.e. features and op-
erators, that are allowed to show up in an expression. By
default, a library L should contain features from the dataset
{x(i)

1 , ..., x
(i)
k } and a special token c for constants (note that

there might be multiple constants in an expression with the
same unique token in L). The default library L0 we use in the
following sections is specified in the Appendix.

1.3 Expression Tree
Similar to other SR methods, Hierarchical Bayesian Sym-
bolic Regression (HBSR) represents an expression as a binary
tree with intermediate nodes bearing tokens of unary opera-
tors (e.g. sin(·), (·)2) or binary operators (e.g.×,+), while
leaf (terminal) nodes carry input features (covariates) or con-
stants. To better capture individual differences among data
points, HBSR does not use a single expression tree (and its
corresponding expression) to fit the entire dataset.

Instead, HBSR assumes a template expression tree T =
{S,Θ,Ω} at the top-level. S denotes the tree structure,
which essentially describes the shape of the binary tree with
empty nodes. Θ is a collection of global parameters that
would be shared across all data points. Each θi ∈ Θ can either

Figure 1: Template expression tree and an instantiation of it. Caption
of this image is TBD but this will be referred by other sections of this
paper.

be a constant value or an operator – the key is that elements in
Θ are concrete tokens that would show up in the final expres-
sions built from the template (see below). On the other hand,
Ω encapsulates priors for local constants that are not decided
yet at the top level. Concretely, each ωi ∈ Ω = {µi, σ

2
i }

represents the mean and variance of a Gaussian distribution,
which serves as the prior density for a constant in the expres-
sion tree. Finally, even though the tokens are not inserted yet,
S also contains information about where to place tokens from
Θ or Ω.

On the local level, the concrete expression tree ti for each
data point di = {xi, yi} is simply a copy of the template T
with all local constants instantiated with priors specified in
Ω. As a concrete example, let Θ = {sin(·), x(i)

1 }, Ω = {ω1}
with ω1 = {0, 1}, and S being a complete binary tree of
level-2 with sin on the root, the feature on the left child and
the (uninstantiated) constant on the right. Figure 1 provides a
visualization of this example.

2 Methods
The construction process of expressions ti, i = 1, ..., n
from the template T has highlighted the hierarchical na-
ture of HBSR. In order to formulate a complete hierarchi-
cal Bayesian model for SR, we need to further define the
(hyper-)priors p(T ), the model likelihood p(D | t1, ..., tn),
and a proper Markov-Chain Monte-Carlo (MCMC) algorithm
to sample from the posterior. We will explain each of these
components in the below subsections.



(From this part on, I’m not trying to write the sections for-
mally as these methodologies require further discussion. In-
stead I will try my best to list out certain concerns and issues
we can think about together)

2.1 Priors
In the original BMS paper, they adopt the exponential ran-
dom graph model framework to perform “moment match-
ing” (i.e. align the means and variances of operation frequen-
cies) on the operators. A few concerns are:

• this seems to ignore the effect of tree structure (i.e. S
in our formulation). The BSR paper does look into this
however.

• when we move from BSR towards HBSR, we need to
place priors onto the template T instead of concrete
trees, i.e. we need to provide hyper-priors for the ωi =
(µi, σ

2
i ). These parameters for Gaussian are not ”fre-

quencies” for operators and need to be dealt with inde-
pendently.

• it remains unclear to me (maybe it’s done using some
tricks in implementation), through reading the BMS pa-
per, on how it places priors onto constants (i.e. I know
that a constant can be viewed as an operator, but in ad-
dition to looking at the frequency of this operator, does
BMS places any prior on its actual value?).

2.2 Likelihood
I believe that the log-likelihood approximation (using Gaus-
sian noise assumption) mentioned in the BSR supplementary
text still applies to HBSR, without much theoretical adjust-
ment needed. With the instantiated trees t1, ..., tn, our model
assumes that

yi = fi(x
(i)
1 , ..., x

(i)
k ) + ϵi ϵi ∼ N(0, σ2) (1)

where fi is the expression corresponding to tree ti. The MLE
for σ2 is computed as

σ̂2 =

∑
i(fi(x

(i)
1 , ..., x

(i)
k )− yi)

2

n
(2)

However, one of the confusing part (not to say it would cause
any problem in implementation, but more on the formulation)
is that the original BMS also assumes additional θ which need
to be optimized via MLE (which means that those θs are con-
sidered fixed instead of stochastic). We can discuss about this
further if you don’t get what I’m concerned about here.

Overall, the likelihood is expressed as

p(D|f1, ..., fn) =
∏
i

p(di|fi) (3)

= (2πσ̂2)−n/2 exp

{∑
i(fi(x

(i)
1 , ..., x

(i)
k )− yi)

2

2σ̂2

}
(4)

and the corresponding log-likelihood follows

log p(D|f1, ..., fn) = −n

2
log 2πσ̂2 (5)

+

∑
i(fi(x

(i)
1 , ..., x

(i)
k )− yi)

2

2σ̂2
(6)

2.3 Posterior inference with MCMC
In HBSR, the difference between a template expression T and
local (instantiated) expressions ti makes posterior more com-
plicated. To make things simpler, we can consider the joint
posterior

p(T, t1, ..., tn|D) (7)
and if we would love to consider our model as the collection
M = {T, t1, ..., tn}, the usual BIC-approximation still ap-
plies if we do not consider potential approximation error. A
few remaining issues include

• For the joint model M , how do we determine the num-
ber of parameters in M (i.e. there are potential redun-
dancies).

• The original BMS paper has an integral form for the joint
model & data p(D, fi); this integration form is crucial
for justifying the use of BIC. Whether this would change
in HBSR requires further investigation.

Overall, I believe the adjustment on the posterior infer-
ence (both theoretically and practically in terms of the par-
allel MCMC design) is definitely needed, but not a priority.
As the posterior is closely related to the prior & likelihood
formulation. We can take a step-by-step approach to figuring
out formulations for the former ones.

3 Experiments
TBD

References


	Notations
	Dataset
	Token Library
	Expression Tree

	Methods
	Priors
	Likelihood
	Posterior inference with MCMC

	Experiments

