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Abstract

Recent models such as OpenAI o1 and DeepSeek-R1 have demonstrated strong per-
formance on reasoning-intensive tasks by generating extended Chain-of-Thought
(CoT) traces. While longer reasoning helps with thorough exploration of solu-
tion paths for complex problems, it also often leads to inefficient and redundant
outputs—a phenomenon commonly described as overthinking. In this paper, we
propose ShorterBetter, a simple yet effective reinforcement learning method
that enables reasoning models to learn their own optimal CoT lengths without
manual supervision. We define the Sample Optimal Length (SOL) as the length
of the shortest correct response among multiple generations, which serves as a
dynamic reward signal to guide the model toward efficient reasoning. Applied
to DeepSeek-Distill-Qwen-1.5B/7B as base models, ShorterBetter achieves
50%-80% reduction in output lengths in both in-domain and out-of-domain rea-
soning tasks while maintaining accuracy. Our reasoning trace analysis shows that
ShorterBetter refines the structure of the reasoning traces by reducing unneces-
sary repetition, excessive self-verification, and over-exploration of alternatives.1

1 Introduction

Improving the reasoning capabilities of Large Language Models (LLMs) has recently led to sub-
stantial performance gains in highly structured and complex tasks, such as mathematical problem-
solving (Shao et al., 2024) and competitive programming (Jiang et al., 2024). Exemplified by OpenAI
o1 (OpenAI, 2024) and DeepSeek-R1 (DeepSeek-AI, 2025), these reasoning models are incentivized
to generate extended Chain-of-Thought (CoT) steps during inference. Such extended reasoning
often includes detailed intermediate steps, reflective self-verifications, and exploration of alternative
problem-solving strategies. These advancements are widely believed to enable LLMs to exhibit
human-like System-2 slow thinking (Evans, 2003; Qu et al., 2025; Li et al., 2025), wherein significant
test-time computational resources are deliberately allocated in exchange for improved accuracy and
robustness on challenging reasoning benchmarks (Jain et al., 2024; Rein et al., 2024).

However, recent studies have shown that excessively long reasoning processes can be counter-
productive, leading not only to computational inefficiencies but also to the so-called overthinking
phenomenon (Chen et al., 2024; Luo et al., 2025a), where additional reasoning steps yield diminishing
returns or even negatively impact model performance (Su et al., 2025).2 For example, we identify
several common problematic patterns in lengthy reasoning traces: (1) verbose repetitions without
new insights, (2) early stopping of promising paths, (3) continued exploration of alternative solutions

1We will open source our training script, model weights and analysis pipelines.
2We provide an experiment in Appendix B.3 demonstrating that incorrect reasoning traces often have longer

output lengths.
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Figure 1: ShorterBetter exhibits strong length reduction performance (1.5B models). We report
accuracy and output length of five sets of models on various tasks. Models include DeepSeek-R1-
Distill-Qwen-1.5B, Qwen2.5-1.5B-Instruct (non-reasoning model), ShorterBetter-1.5B (– =1
and – =2) and Training Efficent-1.5B (Arora and Zanette, 2025). Our method achieves significant
length reduction compared to all baseline reasoning models while maintaining accuracy.

despite having arrived at correct answers, and (4) collapse of reasoning coherence following very
long outputs.3 These observations indicate that lengthy reasoning traces are highly compressible, mo-
tivating techniques producing more concise reasoning chains that improve computational efficiency
while preserving overall performance.

Existing approaches targeting efficient LLM reasoning primarily focus on explicitly controlling
reasoning length, for instance, by imposing a length budget based on user specifications (L1; Aggarwal
and Welleck (2025)), or by incentivizing shorter reasoning paths through comparisons with reference
models (O1-Pruner; Luo et al. (2025a)). Further discussions on related approaches are provided
in Section 2. In contrast to these explicit control strategies, our work is based on the hypothesis
that reasoning models implicitly possess an optimal reasoning length (OL), which is dependent on
model capacity and problem difficulty. OL thus represents an in-between "sweet spot": reasoning
that is shorter might contain insufficient analysis, while reasoning that is longer risks redundancy and
overthinking. This hypothesis has recently undergone theoretical formulation (Wu et al., 2025) and
empirical support (Su et al., 2025). Since OL is intrinsic and not directly observable, we approximate
it with the Sample Optimal Length (SOL): for each problem, we generate multiple outputs and define
its SOL as the length of the shortest correct response. Leveraging SOL as a practical proxy for OL,
we propose ShorterBetter, a reinforcement learning method that teaches the model to dynamically
identify and steer towards efficient reasoning lengths during inference:

In summary, our contributions are as follows.

1. We propose ShorterBetter, a novel reinforcement learning method that guides reasoning
model to autonomously learn its optimal reasoning lengths by defining and using Sample
Optimal Length as a dynamic reward signal.

2. We empirically demonstrate that ShorterBetter, when applied to 1.5B/7B base models,
achieves substantial (50%-80%) reductions in output token length on both in-domain mathe-
matical reasoning tasks and diverse out-of-domain benchmarks, while maintaining accuracy.

3. We introduce novel reasoning trace analysis frameworks to demonstrate how ShorterBetter
enhances reasoning efficiency. Specifically, the model reduces verbosity after finding the correct
answer and refactors the overall reasoning traces to adopt more confident and targeted reasoning
strategies.

3We include concrete examples for each of the aforementioned patterns in Appendix C.
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2 Related Work

Reasoning in LLMs Since Wei et al. (2022) demonstrated that CoT prompting enhances LLM
reasoning, following research has explored ways to scale test-time computation—such as parallel
sampling (Wang et al., 2022) and iterative refinement (Madaan et al., 2023)—to improve performance.
This led to Large Reasoning Models (LRMs) that autonomously generate extended CoTs through
reinforcement learning-based post-training (Zhang et al., 2025). Examples include OpenAI’s o1
(OpenAI, 2024), DeepSeek-R1 (DeepSeek-AI, 2025), and Qwen-QwQ (Yang et al., 2024). These
models internalize the ability to deliberate over multiple steps before producing final answers,
achieving significant performance gains on reasoning-intensive benchmarks (Jimenez et al., 2023;
Jain et al., 2024; Gao et al., 2024). Our work addresses a complementary challenge: how to
dynamically optimize reasoning efficiency without sacrificing accuracy?

The Overthinking Phenomenon This challenge, which was initially observed as verbosity and
increased computational costs in CoT prompting (Nayab et al., 2024; Han et al., 2024), has become
more pronounced with the advent of LRMs—following the identification and understanding of
the overthinking phenomenon (Chen et al., 2024; Su et al., 2025). This phenomenon is typically
understood through two primary lenses. Firstly, overthinking is recognized as a significant source
of computational inefficiency. In this view, LRMs expend excessive resources generating overly
lengthy and often redundant reasoning traces, especially for simple problems (Lee et al., 2025). This
inefficiency manifests as increased token usage, higher latency, and greater computational expenditure
(Aytes et al., 2025), and might be exploited adversarially to induce slowdowns (Kumar et al., 2025).

Secondly, overthinking is increasingly understood as a factor that can directly impair practical
performance. Fatemi et al. (2025) find that excessive reasoning can degrade logical correctness
and introduce irrelevant information; Su et al. (2025) reveal that beyond a certain threshold, longer
reasoning does not necessarily improve and can even degrade accuracy, as models may misjudge
problem difficulty and introduce compounding errors; similarly, Wu et al. (2025) empirically and
theoretically demonstrate a U-shaped performance curve with CoT length, showing that excessively
long reasoning paths are susceptible to noise and error accumulation, ultimately reducing correctness.
This performance degradation has also been observed in agentic tasks where prolonged internal
deliberation correlates with lower task success rates (Cuadron et al., 2025).

Efficient Reasoning with RL Many recent and contemporaneous methods have been proposed
to control the reasoning length in LRMs. Here, we specifically highlight RL-based post-training
strategies directly relevant to our method, leaving readers to the survey by Qu et al. (2025) for
an extensive overview. One category of methods uses an explicit length budget. For instance, L1
(Aggarwal and Welleck, 2025) treats the budget as a user-specified parameter, while DAST (Shen
et al., 2025) adjusts it adaptively based on problem difficulty. These methods then use RL to reward
generations that adhere closely to this budget. Other methods design length rewards differently. O1-
Pruner (Luo et al., 2025a), for example, compares generated lengths against those from a reference
model. More in line with our proposal of sampling multiple responses, Kimi 1.5 (Team, 2025) and
Training Efficient (Arora and Zanette, 2025) utilize the shortest and average lengths, respectively,
among all sampled responses as reward baselines. In contrast, ShorterBetter innovatively anchors
its reward function to the length of the shortest correct response—a design inspired by recent studies
on the existence of optimal reasoning lengths in LRMs (Wu et al., 2025; Lee et al., 2025; Su et al.,
2025).

3 Method

In this work, we aim to guide the reasoning model to think for the right amount of time, which
requires knowing its optimal reasoning length (OL)—a prompt-dependent quantity we formally
define in Section 3.1. However, calculating OL in practice is challenging due to the absence of
precise measures for both problem difficulty and model capability. To address this, we propose in
Section 3.2 a sample-based approximation of OL, yielding a practical length reward. Finally, we
integrate this reward design with Group Relative Policy Optimization (GRPO; Shao et al. (2024)) in
Section 3.3, resulting in a simple yet effective reinforcement learning method that encourages the
model to autonomously discover its optimal reasoning lengths through on-policy learning.
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Figure 2: Flowchart for the ShorterBetter pipeline. We detail the reward design in Section 3.2
and the GRPO algorithm in Section 3.3. Reward values in display are rescaled for better illustration.

3.1 Optimal Reasoning Length (OL): Formal Definition

Problem Setup Let M◊ be our policy model (i.e. a base LRM) with parameters ◊, and D be the
training dataset. Each problem (xi, yú

i
) œ D consists of a prompt xi and a reference response yú

i
.

Given xi, for each rollout the model generates a response y = (y1, . . . , yt) autoregressively from
y ≥ p◊(· | xi), where yk denotes its k-th token and ¸(y) = t is its length. For reasoning tasks, y
typically includes long CoT tokens (often enclosed in </think> tags) followed by a final answer.

To evaluate response quality, we assume access to a verifier I that assigns a normalized correctness
score sI(y, yú

i
) œ [0, 1], where higher scores indicate better alignment with yú. For fixed correctness

threshold c Ø 0 and probability threshold ‘ Ø 0, the optimal reasoning length is defined as

¸ú
c,‘

(xi; ◊) := min{¸(y) : y œ Yc,‘(xi; ◊)}, where

Yc,‘(xi; ◊) := {y : p◊(y | xi) Ø ‘ · sI(y, yú
i
) Ø c}.

Thus, ¸ú
c,‘

(xi; ◊) represents the minimal length at which the model reliably (probability above ‘)
produces a sufficiently correct (score above c) response. Intuitively, OL is longer for more difficult
problems, as the feasible set Yc,‘(xi; ◊) shrinks due to fewer correct responses; conversely, OL
becomes shorter when the model M◊ is capable of generating concise and correct responses more
consistently. This intuition aligns with theoretical insights presented in Wu et al. (2025), despite
differences in their specific formulation.

Remark The above formulation applies broadly to both closed-ended and open-ended reasoning
tasks. For the remainder of this paper, we narrow our focus to tasks with verifiable answers, such as
mathematical and coding problems. These tasks naturally come with a binary verifier that outputs

I(y = yú
i
) := sI(y, yú

i
) œ {0, 1},

indicating perfect correctness (1) or incorrectness (0). Consequently, we adopt the trivial threshold
choice c = 1 and use the shorthand notation I(y = yú

i
) to denote correctness.

3.2 Sample Optimal Length (SOL): A Practical Approximation

Directly computing the optimal reasoning length defined in the previous subsection is practically
infeasible, as it requires complete knowledge of the model’s output distribution. To address this, we
introduce the Sample Optimal Length (SOL)—a practical, sample-based approximation of OL. Given
a prompt xi, our method generates n rollouts of candidate responses G(xi) = {y1, y2, . . . , yn} from
the policy p◊(·|xi). We then define the SOL for the group G(xi) as:

¸SOL(G(xi)) =

Y
_]

_[

min
yjœG(xi): I(yj=yú

i
)=1

¸(yj), if at least one response is correct,

1
n

q
n

j=1 ¸(yj), otherwise.
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Given the SOL, we define the following reward function for each response yj œ G(xi):
r(yj) = – · I(yj = yú

i
) ≠ — ·

--¸(yj) ≠ ¸SOL(G(xi))
-- , (1)

where –, — > 0 are hyperparameters balancing correctness reward and length penalty, respectively.

Our SOL-based reward has several attractive properties:

X No human intervention required: Unlike explicit length-budget approaches, SOL is entirely
data-driven and does not require manual tuning of problem-specific length thresholds.

X Adaptive to difficulty and model capability: SOL naturally becomes longer for harder problems
and shorter for easier ones, as it dynamically adjusts based on the sampled responses; on the other
hand, as the model improves during training, SOL automatically updates to reflect the shortest
correct reasoning length achievable by the current policy.

X Balanced handling of failure cases: When no correct responses exist within a sampled group,
we set SOL to the average response length as a neutral baseline. Our approach avoids biasing the
model toward either overthinking or underthinking when there is no correct signal.

We defer the detailed discussion on specific hyperparameter choices (–, —, n) to Section 4, and the
ablation studies on our reward design to Section 5.3. To see the training dynamics of ShorterBetter,
please refer to Appendix B.2.

3.3 Policy Optimization via GRPO

To optimize the model under the SOL-based reward function, we adopt the Group Relative Policy
Optimization (GRPO) algorithm (Shao et al., 2024). GRPO operates on groups of sampled trajectories
(in our case, a group G(xi) has n samples) and assigns within-group advantage estimates based on
normalizing the rewards r = [r(y1), · · · , r(yn)] calculated in Eq. (1). Specifically, we have

Âj,k = rj ≠ mean(r)
std(r)

as the advantage for the k-th step (token) of the j-th sample, where ‘mean’ and ‘std’ calculate sample
reward average and standard deviation. Let M◊ref be a frozen reference policy (usually a copy of
the current model before a few gradient updates), and pk

◊
:= p◊(yk

j
| y<k

j
, xi) denote the conditional

probability on the first k ≠ 1 tokens, the GRPO loss is

LGRPO(◊) = ≠ 1
n

nÿ

j=1

1
tj

tjÿ

k=1

Ë
W

!
Âj,k, pk

◊
, pk

◊ref
, Á

"
≠ “ · D̃KL

#
pk

◊
Îpk

◊ref

$È
, (2)

where W denotes a clipped policy improvement objective incorporating the advantage Âj,k and
likelihood ratio between current and reference policies; D̃KL is a KL divergence approximator
(Schulman, 2020); Á and “ are hyperparameters for the clipping threshold and KL penalty, respectively.
We provide the full expression and details in Appendix A.1.

Policy updates are then performed by minimizing LGRPO(◊) via gradient descent, encouraging the
model to increase the likelihood of high-reward samples while constraining deviation from the
reference policy. We choose GRPO for its compatibility with group-based reward designs and its
empirical success in training LRMs (DeepSeek-AI, 2025; Face, 2025). Finally, we include a flowchart
illustration of our full method in Fig. 2.

4 Experimental Setup

Datasets We fine-tune our base model on DeepScaleR-preview (Luo et al., 2025b), a dataset which
comprises 40K mathematical problems drawn from AIME, AMC, Omni-MATH (Gao et al., 2024),
and Still dataset (Min et al., 2024). This mixed dataset covers tasks from high-school math problems
to Olympiad-level challenges. For in-domain evaluation, we holdout subsets of the training math
datasets, containing 1K problems in total. Additionally, we assess the out-of-domain generalization
of our method on a set of reasoning-intensive benchmarks with a total of 6K problems, including
MathQA (Amini et al., 2019) MMLU (Hendrycks et al., 2021), Big-Bench Hard (BBH; Suzgun et al.
(2022)) and coding benchmarks including LiveCodeBench (Jain et al., 2024), MBPP (Austin et al.,
2021) and HumanEval (Chen et al., 2021).
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Base Models We use DeepSeek-R1-Distill-Qwen-1.5B and 7B (DeepSeek-AI, 2025) as our
base reasoning models and train our models from them. We will refer to our trained model as
ShorterBetter-1.5B and ShorterBetter-7B in the subsequent sections.

Evaluations For evaluation, we generate one response for each problem. For each benchmark, we
consider 3 metrics: (1) Accuracy, defined as the number of correct responses divided by the total
number of responses; (2) Output Length, measured as the average number of tokens per benchmark;
and (3) Accuracy-Efficiency (AE) Score, a composite metric balancing length reduction against
accuracy preservation (introduced by Luo et al. (2025a)). AE Score rewards models that shorten
outputs without sacrificing correctness, with higher values indicating better efficiency. For the full
formulation and hyperparameter choices, see Appendix A.2.

Implementation Details We used Verl (Sheng et al., 2024), an open-source RL training library,
for post-training. We fine-tune our 1.5B base model with a batch size of N = 64 and a rollout group
size of n = 8. Training was conducted for 300 steps with a fixed learning rate of 1 ◊ 10≠6. Since the
7B variant converges faster due to it’s better model capacity, we trained for only 200 steps. Due to
computational constraints, we set a maximum inference length of 6K tokens for the 1.5B model and
5K tokens for the 7B model during training. (We set 16K maximum tokens budgets during evaluation)
These constraints only affect the early stages of training, as the mean inference lengths quickly drop
below the limits. To study the effect of hyperparameters, we compared two 1.5B variants with – = 1
and – = 2, while keeping — = 0.001 fixed. For the GRPO training configuration, we set “ = 0.001
and Á = 0.2 in Eq. (2).

Baselines To assess the efficiency of our method, we compare our trained models against 4
baselines:

• DeepSeek-R1-Distill-Qwen-1.5B/7B (DeepSeek-AI, 2025): Models obtained by distillation from
the Qwen series using larger DeepSeek-R1 models. We refer to these models as Distill-1.5B
and Distill-7B in the following sections.

• Qwen2.5-1.5B/7B-Instruct (Team, 2024): Instruction-tuned models from the Qwen 2.5 family of
large language models. We include these non-reasoning models as a contrast, i.e., fast thinking
without deliberate reasoning. We denote them as Instruct-1.5B and Instruct-7B hereafter.

• Training Efficient (Arora and Zanette, 2025): We evaluated the 1.5B/7B open-source models
released in this work, which have the same base models as ours.

• O1-Pruner (Luo et al., 2025a): We evaluate the 7B open-source model proposed in this work,4
which is fine-tuned from the Marco-o1 base model (Zhao et al., 2024).

5 Results and Discussion

In this section, we present and analyze the effectiveness of our proposed method. We compare the
performance of our trained models against the baselines across a range of in-domain math tasks
as well as out-of-domain benchmarks.5 We then provide an in-depth analysis of how our method
changed the structure of the reasoning traces.

5.1 Experimental Results

ShorterBetter significantly reduces inference length while maintaining performance In
Fig. 1, we compare the performance of the ShorterBetter-1.5B against Distill-1.5B,
Instruct-1.5B and Training Efficient-1.5B. We report results for two variants of
ShorterBetter-1.5B, with hyperparameters – = 1 and – = 2, respectively. In in-domain math
tasks, averaging over all benchmarks, the two models achieve inference length reductions of 77.6%
and 79.2%, with corresponding changes in accuracy of +2.5 % and +3.2 %, respectively. In out-of-
domain tasks, averaging over all benchmarks, the two variants achieve average length reductions of

4Since this work does not provide a 1.5B model, we will only use 7B version as the baseline.
5In-domain and out-of-domain tasks are defined relative to ShorterBetter’s training dataset. See more

discussions in Appendix A.3
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Distill Instruct ShorterBetter (– = 2) Training Efficient O1-pruner
Acc. Len. Acc. Len. Acc. Len. AE Scoreø Acc. Len. AE Scoreø Acc. Len. AE Scoreø

In-domain Tasks
AIME 36.7 11382 16.7 1172 53.3 5288 1.89 50.0 8821 1.31 6.7 4843 0.28
Olympiad 52.0 7762 38.2 944 50.7 3410 0.44 53.9 5544 0.40 29.6 3884 0.05
AMC 66.3 7414 51.8 1084 75.9 2580 1.09 72.3 4596 0.65 30.1 4304 0.31
Minerva 40.8 5034 38.2 1367 44.1 1341 0.98 40.4 2796 0.40 23.5 5277 0.55

Out-of-domain Tasks
MathQA 83.3 3442 68.9 2585 85.4 980 0.79 78.8 1350 0.34 32.8 6321 0.14
BBH 68.3 2126 67.3 953 63.1 535 0.37 62.1 798 0.17 55.4 5431 -0.35
MMLU 66.3 1528 76.0 269 68.6 567 0.73 69.3 891 0.55 72.3 5979 0.31
LiveCodeBench 50.6 8683 24.7 189 49.5 5228 0.29 49.7 7589 0.04 21.6 9726 0.20

Table 1: Performance comparison of 7B models across diverse tasks. For each task, we highlight
the best-performing results across all evaluated models. The AE Scores are computed using hyperpa-
rameters Ï = 1, ÷ = 3, and ◊ = 5. The proposed ShorterBetter model consistently achieves the
highest AE Scores across both in-domain and out-of-domain benchmarks. For experimental details
and additional results on coding tasks, refer to Appendix A and Appendix B.1.

77.0 % and 75.5 % , with corresponding changes in accuracy of –0.8 % and –1.6 %, respectively.6
These results also indicate that our method achieves similar performance in terms of length reduction
and accuracy preservation with different values of correctness reward hyperparameter –.

In Table 1, we provide a comprehensive comparison between ShorterBetter-7B (– = 2) and
four 7B baseline models.7 Consistent with our 1.5B model evaluation, we assess all 7B models
on both in-domain and out-of-domain tasks. For Distill-7B and Instruct-7B, we only report
accuracy and output length as primary evaluation metrics since they didn’t undergo length reduction
training. For models trained with length-reduction techniques, we additionally report the AE Score,
which quantifies performance improvements relative to their respective base models. (See a formal
definition of AE Score in Appendix A.2)

Our 7B model achieves substantial reductions in output length, up to 70%, while maintaining
competitive accuracy compared to the Distill-7B baseline. In in-domain math tasks, averaging
over all benchmarks, ShorterBetter-7B attains a length reduction of 62.1% alongside an accuracy
improvement of +7.1%. In out-of-domain tasks, averaging over all benchmarks, the model achieves
a length reduction of 62.3% with an accuracy change of -0.48%. Moreover, ShorterBetter-7B
attains the highest AE Scores in all evaluated tasks, outperforming Training Efficient and O1-Pruner.

Compared to prior length-reduction methods, ShorterBetter achieves stronger length-reduction
capability. We attribute this performance to the design of SOL, which gives clear signals to guide
the model to learn concise and robust reasoning traces during reinforcement learning. For more
discussions on the effectiveness of SOL, please refer to Appendix B.2. In the next section, we show
that our method refines the structure of the reasoning traces relative to the base model.

5.2 Reasoning Structure Analysis

In this section, we present two novel frameworks for analyzing reasoning structure, which illus-
trate how ShorterBetter compresses its reasoning traces and complement the accuracy and
token-length metrics introduced earlier. We employ Gemini 2.5 Flash Preview (Google, 2025)
as an automated judge (details in Appendix D.1) to breakdown and compare the reasoning traces
of ShorterBetter-7B and Distill-7B, shedding lights on how ShorterBetter optimizes for
reasoning efficiency.

Output Length after First Appearance of Correct Answer We use LLM-as-a-judge to iden-
tify the first occurrence of the correct answer in the reasoning trace for questions where both

6Due to space constraint, we only present LiveCodeBench here and place other coding benchmarks in Fig. 5
and Table 2 in the appendix

7For a fair comparison, we compute the AE Scores of O1-Pruner using its corresponding base model,
Marco-o1-7B, whereas the base models for ShorterBetter and Training Efficient are both Distill-7B. Due to
space limitations, the performance of Marco-o1-7B is placed in Appendix B.4
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Figure 3: Reasoning trace structure analysis. Left: Percentage of remaining output after first
appearance of the correct answer; Right: Token-level distribution of reasoning categories on the
MATH benchmark.

ShorterBetter-7B and Distill-7B provide correct answers. We conduct this analysis across
four benchmarks: AMC, MATH, Olympiad, and Minerva. For each model, we calculate what
percentage of its total output (in tokens) appears after the first time that the correct answer is stated.
The results are shown in Fig. 3 (Left), where higher percentage represents more reasoning outputs
after the model finds the correct answer. We observe that the percentages of tokens appearing after
the first correct answer decreases by 15%, 20%, 17%, and 19% for AMC, MATH, Olympiad, and
Minerva benchmarks, respectively. This suggests that ShorterBetter-7B reaches conclusions more
efficiently, using fewer tokens on extra reasoning once it reaches the correct answer, and we will
explore more detailed reasoning structure refinement in the next section.

Breakdown of Reasoning Traces To better understand how ShorterBetter improves reasoning
efficiency, we conduct a fine-grained analysis of the reasoning trace structure. Specifically, we develop
an LLM-as-a-judge framework to assign functional categories to each sentence in the generated
traces from ShorterBetter-7B and Distill-7B, and compute the token-level proportion of each
reasoning category. We begin by carefully inspecting common patterns in Chain-of-Thought reasoning
and curating a set of mutually exclusive categories, each assigned at the sentence level:

‚ Pivotal Reasoning: Steps that directly correspond to a specific part of the final solution.
‚ Productive Elaboration & Calculation: Necessary calculations, deductions, or planning that

support a pivotal step but aren’t restated in the final summary.
‚ Exploring Alternatives: Attempts to try different approaches or check other methods, even if

they aren’t used in the final solution.
‚ Verification & Self-Correction: Checks and corrections of earlier results to catch errors.
‚ Non-Substantive Statement: Redundant comments, filler, or trivial rephrasing that doesn’t

advance the solution.

We then use LLM-as-a-judge to label each sentence with the most appropriate category.8 Finally,
we compute the proportion of each category by counting tokens using the tested model’s native
tokenizer, enabling a consistent token-level comparison across models. In Fig. 3 (Right), we show
the distribution of reasoning categories for both models on the MATH benchmark. Compared to
Distill-7B, ShorterBetter-7B exhibits notable structural shifts. Specifically, the proportions of
Pivotal Reasoning and Productive Elaboration & Calculation increase by 15.6% and 6.8%, respec-
tively—indicating a denser concentration of meaningful, solution-oriented reasoning. Simultaneously,
the share of Non-Substantive Statements decreases by 4.8%, suggesting that ShorterBetter-7B pro-
duces fewer filler or redundant tokens. We also observe reductions in Verification & Self-Correction
(-14.1%) and Exploring Alternatives (-3.9%), implying that the model is more decisive and less
prone to unnecessary detours. Altogether, these shifts support the conclusion that ShorterBetter
promotes more confident and streamlined reasoning trajectories. This finding aligns with our analysis
in the previous section and may help address the early stopping of promising paths issue mentioned
in Section 1.

8For transparency and reproducibility, our prompt and examples of each category are provided in Ap-
pendix D.2
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Figure 4: Length and accuracy trends of the ablation experiments. Left: Discard the entire design
of SOL and partially discard SOL. Denoted as Discard and Partial in the plot. Right: Remove the
correct rewarding term in the reward function but keep the entire design of SOL, i.e., set – = 0. Both
ablation experiments are conducted on Distill-7B.

While our reasoning structure analysis in Section 5.2 provides valuable insights, we encourage future
works to develop more rigorous quantitative metrics for evaluating reasoning structure, which could
further validate and extend our findings.

5.3 Ablation Studies

Naively adopting the shortest response as target length leads to training collapses We con-
ducted two ablation experiments: (1) Discarding the entire design of ShorterBetter: remove the
correctness term in the reward function and always choose the length of the shortest response as the
reward signal. (2) Partially change the design of SOL : when there is no correct response, select the
length of the shortest response as the SOL, instead of using the average length as in Eq. (1).9 Note
that we still keep the correctness reward term in experiment (2). In Fig. 4 (left), model trainings under
both ablation experiment settings quickly collapse within 100 steps, suggesting that naively choosing
the shortest response length as a reward can easily destabilize the training.

Sample optimal length inherently combines correctness and conciseness We conducted another
experiment that keeps the entire design of SOL while discarding the correctness reward term in the
reward function, i.e., set – = 0. As shown in Fig. 4 (right), although there are drastic fluctuations
in accuracy due to the absence of explicit correct rewards, the training still runs effectively. This
result suggests that the design of SOL inherently combines correctness and conciseness. Nonetheless,
incorporating a correctness reward term remains essential to prevent degradation in model accuracy.

6 Conclusion and Future Directions

This paper presents ShorterBetter, a reinforcement learning method that enables reasoning models
to dynamically optimize their CoT lengths without manual supervision. By introducing Sample
Optimal Length as a self-supervised reward signal, our method achieves significant reductions in
output length while maintaining accuracy across in-domain and out-of-domain benchmarks. We also
present innovative analytical framework to show ShorterBetter’s reasoning structure improvement.

While ShorterBetter is currently showing strong empirical results on tasks with verifiable answers,
we note that our general formulation in Section 3.1 naturally extends to open-ended settings with
non-binary correctness scores. Another future direction is to apply and evaluate our methods on
larger-scale reasoning models (Team, 2024). Finally, our reasoning trace analysis shows that different
categories of reasoning behavior are compressed to different extents, which may inform the design of
more fine-grained and behavior-aware reasoning optimization strategies.

9Note that in experiment (1), we replace SOL with sample minimal length and discard the correctness term
in the reward function. The reward function is rewritten as r(yj) = ≠—

--minyiœG(xi) ¸(yi) ≠ ¸(yj)
--. While in

experiment (2), we still keep the correctness term in the reward function and set – = 2.
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Broader Impact

This work contributes to the growing body of research on efficient reasoning in LLMs. By reducing
redundant reasoning steps while maintaining accuracy, our method could help lower computational
costs and improve the practicality of deploying LLMs in resource-constrained settings. Like many
advancements in ML, this research may have indirect societal implications—for instance, more
efficient models could reduce energy consumption or enable faster inference in applications such as
education or automated decision-making. However, our focus is narrowly technical, and we do not
make strong claims about specific real-world benefits or risks. As with any optimization technique,
the broader impact will depend on how it is integrated into larger systems and deployed in practice.

A Technical and Experimental Details

A.1 Detailed Specification of GRPO Algorithm

Here we provide the complete expressions and details of the GRPO (DeepSeek-AI, 2025) objective
(loss function) mentioned in Section 3.3:

LGRPO(◊) = ≠ 1
n

nÿ

j=1

1
tj

tjÿ

k=1

Ë
W

!
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Âj,k

B
,

where the clipping function clip(x; a, b) := min(b, max(a, x)) prevents the updated parameters from
deviating too much from the reference policy. For KL divergence, Schulman (2020) proposes the
following approximator
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Finally, while the above formulation considers multiple rollouts for a single prompt xi, in practice we
compute the GRPO loss and update the policy parameters over a batch of N prompts at each step.

A.2 Detailed Formulation for Accuracy-Efficiency (AE) Score

The Accuracy-Efficiency (AE) Score, introduced by Luo et al. (2025a), provides a composite metric
to evaluate whether a model improves inference efficiency—i.e., reduces output length—without
sacrificing accuracy. It is defined as follows:

AE Score =
;

Ï · �Length + ÷ · |�Acc|, if �Acc Ø 0
Ï · �Length ≠ ◊ · |�Acc|, if �Acc < 0

Here, �Length and �Acc denote the percentage changes in output length and accuracy, respectively,
of the evaluated model relative to its base model. Positive AE Scores indicate that the model generates
shorter outputs while maintaining or improving accuracy, while negative scores penalize accuracy
degradation. In our experiments, we use the same hyperparameters as in Luo et al. (2025a):
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• Ï = 1 (weight on length reduction)

• ÷ = 3 (bonus for accuracy gains)

• ◊ = 5 (penalty for accuracy drops)

The asymmetric design (with ◊ > ÷) penalizes accuracy drops more heavily than gains, reflecting the
practical preference for avoiding performance degradation.

A.3 Experimental Details

For evaluation, we categorize tasks as either in-domain or out-of-domain, based on the training data
used for ShorterBetter. Our method is trained on the DeepScaleR-Preview dataset (Luo et al.,
2025b), a composite benchmark that includes AIME, AMC, Olympiad-Bench, MATH, Minerva, etc.
Accordingly, held-out subsets from these datasets are considered in-domain. In contrast, tasks such
as MathQA, BBH, MMLU, LiveCodeBench, MBPP, and HumanEval—which are not included in the
training corpus—are treated as out-of-domain.

Other length-reduction baselines are trained on different datasets. Specifically, Training Effi-
cient (Arora and Zanette, 2025) is trained on MATH, CN-K12, AIME, AoPS, and Olympiad-Bench,
while O1-Pruner (Luo et al., 2025a) is trained solely on MATH. There exists partial overlap in training
data between these baselines and ShorterBetter. Nevertheless, the out-of-domain benchmarks
defined in this work are held out from all models’ training data and thus serve as a fair test of
generalization.

For model comparisons in Fig. 1 and Table 1, we directly downloaded the open-source models of
Training Efficient 1.5B/7B and O1-Pruner 7B from HuggingFace for evaluation. For O1-Pruner,
since the paper does not provide a 1.5B version, we didn’t include it in Fig. 1. For Training Efficient,
we used the 1.5B and 7B versions both with hyperparameters – = 0.4 (following the original paper).
During all evaluations, the temperature was set to 0.9. All problems are answered once, and the
accuracy is calculated as the fraction of correct answers among all answers.

A.4 Computational Resources

We trained our ShorterBetter-1.5B with 4 A100 GPUs, using approximately 16 hours. We trained
ShorterBetter-7B with 8 A100 GPUs, using less than 12 hours.

B Additional Experiment Results

B.1 Coding Benchmarks

We report the result of the coding experiment in Table 2 and Fig. 5.

1.5B Models 7B Models

Task R1-Distill Instruct ShorterBetter Training Efficient R1-Distill Instruct ShorterBetter Training Efficient O1-pruner

MBPP 0.544 (4151) 0.409 (124) 0.476 (1146) 0.506 (2402) 0.659 (2928) 0.609 (150) 0.632 (1055) 0.607 (2113) 0.494 (495)
HumanEval 0.720 (5123) 0.463 (263) 0.628 (1551) 0.665 (3280) 0.854 (3841) 0.811 (398) 0.799 (1318) 0.866 (2601) 0.829 (254)
LiveCodeBench 0.260 (10204) 0.089 (262) 0.260 (4861) 0.244 (7792) 0.506 (8683) 0.247 (189) 0.495 (5228) 0.216 (9726) 0.483 (1847)

Table 2: Coding performance across model sizes and training methods. Each entry reports the
accuracy rate and the average inference length in tokens (shown in parentheses). Both ShorterBetter
models were fine-tuned with – = 2. Baseline models are from Arora and Zanette (2025). Bold
numbers indicate best accuracy for each model size category.

B.2 Training dynamics of ShorterBetter

In Fig. 6 we show the output length (in tokens) trends and accuracy trends of ShorterBetter-1.5B
and ShorterBetter-7B during GRPO training. For clearer illustration, we present the first 200
steps of the two models.
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Figure 5: Model performance on coding benchmarks.

Figure 6: Training dynamics of ShorterBetter-1.5B and ShorterBetter-1.5B models.

In Fig. 7, we illustrate how the model learns to identify optimal inference lengths throughout the
training. For each sample generation (n = 8) of a given problem, we compute the SOL and take the
batch-wise average. We also track the mean deviation of individual output from their respective SOL,
defined as di = ¸(yi)≠¸

SOL(G(xi))
¸SOL(G(xi)) . For instance, a deviation of 0.2 at a given training step indicates

that the generated outputs deviate from the optimal length by 20% on average. The plots show that
both the SOL and the mean deviation steadily decrease over training, particularly within the first 100
steps. This trend suggests that reinforcement learning is successfully guiding the model to produce
outputs that cluster towards the optimal length.

B.3 Incorrect reasoning traces are significantly longer

In Fig. 8, we conducted an experiment using 150 problems (30 each from AIME, AMC, MATH,
Olympiad-bench, and Minerva). For each problem, we generated 10 responses with the Distill-
1.5B/7B models, then filtered out problems where all responses were correct or all responses were
wrong. We then computed the difference between the average lengths of correct and incorrect
responses to form a length gap distribution. The results show that, on average, for the same problem,
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Figure 7: SOL trends and mean deviations during training

incorrect responses are significantly longer than correct ones, by 5,541 tokens on DeepSeek-R1-Distill-
Qwen-1.5B and 5,910 tokens on DeepSeek-R1-Distill-Qwen-7B. This suggests a clear correlation
between reasoning errors and unnecessarily long CoT traces in Large Reasoning Models.

Figure 8: Length gap distributions for the Distill-1.5B and 7B models.

B.4 Performance of Marco-o1

Here we report the performance of Marco-o1 on various benchmarks, which is used to calculate the
AE Scores of O1-Pruner in Table 1.

Dataset Accuracy Length

AIME 0.067 6711
Olympiad 0.317 6325
AMC 0.301 6210
Minerva 0.217 7583
MathQA 0.331 7730
BBH 0.623 6829
MMLU 0.701 7650
LiveCodeBench 0.225 12856
HumanEval 0.841 317
MBPP 0.454 877

Table 3: Marco-o1 performance across datasets
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C Examples of Unwanted Reasoning Behaviors

C.1 Verbose Repetition and Self-Verification in Intermediate Steps

Prompt

Denali and Nate work for a dog walking business and are paid for
each dog they walk. Denali is responsible for 16 dogs and Nate is
responsible for 12 dogs. Under the company’s new policy, they will
be assigned or unassigned new dogs in groups of x dogs. The ratio
of Denali’s pay to Nate’s pay would be the same if Denali started
walking 4x more dogs and Nate stayed at 12 dogs or if x of Nate’s
dogs were reassigned to Denali. Find x if x ”= 0.

Response (DeepSeek-R1-Distill-Qwen-1.5B)
...
Wait, perhaps the problem is not about the same pay ratio, but the
same total number of dogs? But the problem says "the ratio of
Denali’s pay to Nate’s pay would be the same." So it’s about the pay
ratio, not the number of dogs.
Wait, another thought: Maybe the ratio is in terms of the number of
dogs walked, so if the ratio of their pay is same, and pay is per dog,
then perhaps the number of dogs walked should be proportional.
Wait, that is, if Denali walks 16 dogs and Nate walks 12, the ratio
of their pay is (16)/(12) if they are paid per dog.
...
Wait, so regardless of how I set up the ratio, I end up with x=0.
But since the problem states x ”=0, perhaps my entire approach is
wrong.
Wait, let me think differently.
Perhaps the ratio of their pay is the same when they are assigned x
dogs, regardless of direction.
Wait, when they are assigned x dogs in groups of x, meaning x dogs
are reassigned. So the ratio is same.
Perhaps it’s the pay per dog ratio that’s the same.
Wait, maybe Denali’s pay per dog is same as Nate’s.
But that would be same as each getting paid per dog.
Wait, but if they are reassigned, their pay per dog would be same.
Wait, perhaps we can think in terms of average.
Wait, I’m getting confused. Maybe I should go back to the original
problem.
**Problem Statement:** ...
But we saw that this leads to x=0.
Alternatively, maybe the ratio is the other way around.
Wait, perhaps the ratio is the pay per dog ratio. So if the pay per
dog is same, then the ratio is 1:1.
But in that case, both would have to walk same number of dogs. But
the problem says that if x dogs are reassigned, it results in same
ratio.
But in that case, if the pay per dog is same, then it’s just the same
number of dogs walked, which would imply that 16 ≠ x = 16 + 4x ∆ ≠5x =
0 ∆ x = 0, which is again invalid.
Wait, perhaps I need to approach this problem by assuming that the
pay ratio remains the same.
...
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C.2 Early Stopping of Promising Reasoning Paths

Prompt

The function f satisfies the functional equation

f(x) + f(y) = f(x + y) ≠ xy ≠ 1
for all real numbers x and y. If f(1) = 1, then find all integers n
such that f(n) = n. Enter all such integers, separated by commas.

Response (DeepSeek-R1-Distill-Qwen-1.5B)
...
Now, let’s find f(2):
Using the recursive formula, set x = 1:
f(2) = f(1) + 1 + 2 = 1 + 1 + 2 = 4
Wait, is that right? Let me check.
Wait, actually, according to the recursive formula f(x + 1) = f(x) +
x + 2, so for x = 1: ...

We observe that the model starts to check for x = 1 immediately after it decides to check f(2),
interrupting its own verification step.

C.3 Continued Exploration of Alternative Solutions After Reaching Correct Answer

Prompt

Find all values of x that satisfy the equation x =
Ô

11 ≠ 2x + 4.

Response (DeepSeek-R1-Distill-Qwen-1.5B)
...
So, the solutions are x = 1 and x = 5. But wait, I need to check
if these solutions actually satisfy the original equation because
sometimes squaring both sides can introduce extraneous solutions.
First, let me check x = 1:
Left side: 1 =


11 ≠ 2(1) + 4 Calculate inside the square root: 11 -

2 = 9 So, square root of 9 is 3. Then 3 + 4 = 7 But left side is 1,
so 1 ”= 7. That means x = 1 is not a valid solution.
Now, check x = 5:
Left side: 5 =


11 ≠ 2(5) + 4 Calculate inside the square root: 11

- 10 = 1 Square root of 1 is 1. Then 1 + 4 = 5 So, 5 = 5, which is
true. Therefore, x = 5 is a valid solution.
But wait, earlier I thought that x must be greater than or equal to 4.
Since x = 5 is greater than 4, that’s fine. But x = 1 is less than 4,
...
Wait, hold on. Let me double-check my earlier factorization and
solutions.
I had x2 ≠ 6x + 5 = 0, which factored into (x - 1)(x - 5) = 0, giving x
= 1 and x = 5.
Plugging x = 5 into the original equation worked, but plugging x = 1
didn’t. So, x = 1 is extraneous.
But is there any other step I should verify? Sometimes, especially
with square roots, squaring both sides can sometimes lead to other
issues, but in this case, since we didn’t square the square root term
on both sides but isolated it once, it seems fine.
Let me consider another method to solve the equation, ...
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...
Same quadratic as before, so same solutions. So, same process, same
result. So, x = 1 and x = 5, but only x = 5 is valid.
But just to make sure, let me consider if squaring the equation
introduced any extraneous solutions. Sometimes when we square both
sides, it’s easy to have extra roots.
...

C.4 Collapse of Reasoning Coherence Following Very Long Outputs

Response (DeepSeek-R1-Distill-Qwen-1.5B; budget = 16000 tokens)
...
WaitWait endpoints.
about Wait.
, say needWait.
Maybe Wait Wait set’s.
me Wait„ mark,:,’s No.
the„ me’s number minimumButButWait.’s the,.
WaitWaitWait.
ao over be alone to..
, Wait.
. the the the Wait Wait,.’s the me’s Wait Wait the.’s.
me. with of., range’s., to (WaitWait k me nonWaitWait me’s total
number integer’s theBut a asagrams, No me„her.
Well Wait Wait a. ...
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D Analyzing Reasoning Traces with LLM-as-a-judge

D.1 LLM-as-a-judge Setup

In order to illustrate the reasoning structure improvement of SB, we used LLM-as-a-judge to help us
analyze the reasoning trace because the lengthy reasoning trace is hard for human to read. We use
Gemini 2.5 Flash Preview (Google, 2025) with top_p=0.95 and temperature=0.7. The prompt
for reasoning trace categorization and identifying the first appearance of correct answer as follows:

Prompt (Reasoning Categorization)

You are a reasoning trace analyst. Your role is to categorize each
line (separated by a newline, but do not treat equations as an
individual line) in a given reasoning trace according to the function
it serves within the reasoning process. The goal is to understand
how different parts of the model’s reasoning contribute (or not) to
the final answer.

You will be given a **full reasoning trace**, which ends with a final
answer after the �</think>�tag. You must:

1. **Only analyze the content before the �</think>�tag**.
2. **Split the reasoning trace into individual lines**, multiple
sentences might be in a single line, a line should be ended by a
newline.
3. **Assign exactly one label to each line** from the following
**mutually exclusive categories**. Choose the **most fitting** label
based on the line’s function in context.

### Categories:

1. **Adopted Reasoning**
* **Definition**: A reasoning step (e.g., setting up a key equation
that’s shown in the summary, stating a critical definition that’s
part of the summary, deriving a final value for a variable that’s
highlighted in the summary, or an intermediate result explicitly
carried forward into the summary) whose content or conclusion is
**explicitly stated or directly corresponds to a distinct step,
equation, or piece of information in the summarized solution
presented after the �</think>�tag.** These are the landmark
achievements or key building blocks in the reasoning trace that are
showcased in the final, condensed explanation.
* *Example*: If the final summary after �</think>�includes the
equation �s2+2s≠11.25 = 0�, then the line in the reasoning trace where
this equation is first derived or stated in this form is "Pivotal
Reasoning". Similarly, the line stating "s = 2.5 km/h" is "Pivotal
Reasoning" if s = 2.5 is a key reported value in the final summary.

2. **Exploring Alternatives**
* **Definition**: Lines that perform necessary calculations, logical
deductions, initial problem interpretation (e.g., "The problem asks
for...", "We are given..."), variable definitions (if not themselves
pivotal as per the above definition), strategic planning (e.g.,
"First, I will find s, then t."), or explanations of methodology that
**directly contribute to reaching a "Pivotal Reasoning" step or the
overall solution, but are not themselves explicitly restated as a
distinct element in the final summarized solution.**
* *Example*: "Hmm, I need to convert t into hours because her
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walking speed is in km/h." (Problem understanding leading to a
pivotal setup). "Multiply both sides by s(s + 2): 18 = 1.6 · s(s + 2)." (A
calculation step leading to a pivotal equation). "Let me compute
that left side: ... = 18/(s(s + 2))" (The process of algebraic
simplification).

3. **Repetition & Rephrasing**
* **Definition**: Reasoning segments that explore solution paths,
hypotheses, methods, or calculations that are **ultimately abandoned,
identified by the LLM as incorrect or less viable, or otherwise
do not form part of the sequence leading to the adopted final
solution.** This includes trying a different formula that is then
discarded, or starting a calculation that is then reversed due to a
change in approach.
* *Example*: "Perhaps I can solve for t first by isolating it from
equation 1... no, subtracting the equations seems more direct to
eliminate t." (The statement about solving for t first by isolation
would be "Alternative Path or Exploration" if that path is not
taken).

4. **Verification & Explanation** * **Definition**: Lines that
are redundant (e.g., repeating information or conclusions verbatim
or near-verbatim shortly after they’ve been stated, without adding
new purpose like emphasis for a next step), purely filler or
conversational remarks (e.g., "Okay, so...", "Good.", "Let me
think..."), or provide overly trivial explanations/rephrasing that
do not advance the solution or significantly aid in understanding the
problem-solving process (e.g., "This is a quadratic equation in s,"
immediately after writing s2 + 2s ≠ 11.25 = 0). This also includes
restating parts of the problem verbatim without adding interpretation
or planning elements, once the initial understanding is established.
* *Example*: "So, s is 2.5 km/h." (if stated immediately after "Thus,
s = ... = 2.5 km/h" and not serving as a premise for an immediate
subsequent calculation). "Let me write them down again:" (if the
equations were just presented). "Yes, that seems correct," if it’s a
low-effort affirmation rather than the concluding part of a rigorous
"Verification" step.

### Additional Instructions:

* **Stop processing as soon as you encounter the ‘</think>‘ tag**.
Do not categorize anything beyond it. The content after �</think>�is
used as the reference for "Pivotal Reasoning". * If a line **repeats
or paraphrases** an earlier line without adding new value or
serving a clear structural purpose (like summarizing inputs before
a new phase of calculation), categorize the repeated instance as
**“Non-Substantive Statement”**, even if the original served a
different, valid purpose. * If a line could arguably fit into
more than one category, choose the category that best describes
its **primary function or most specific contribution** in that
context. For instance, a calculation that corrects a previous error
is "Verification & Self-Correction" rather than just "Productive
Elaboration & Calculation." A statement of a key equation from the
final summary is "Pivotal Reasoning" even if it also elaborates. *
Do **not infer the logical correctness** of the reasoning or the
final answer. The categorization is about the *structure and an
LLM’s perceived purpose* of each statement within its own reasoning
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process. * Treat each line **independently for categorization**,
but use the **surrounding context** (preceding and succeeding lines)
to understand its function, especially for identifying repetitions,
planning statements, or the flow of logic. * If the reasoning trace
starts with the �</think>�tag, i.e.,
### Output Format:

Return your output as a **JSON array** of objects. Each object
should have:

* "text": The full original line (string).
* "label": One of the five category names above (string).

���json [ "text": "Alternatively, we can try to factor the
quadratic equation, but the roots might not be integers.",
"label": "Exploring Alternatives" , "text": "Therefore,
<span class="math-inline">x 3̄</span> is the value we will
use.", "label": "Pivotal Reasoning" , "text": "So, <span
class="math-inline">x</span> is 3.", "label": "Non-Substantive
Statement" ]asciigrave��

Return **only** the structured JSON list, no extra commentary or
explanation.

Prompt (Identify First Appearance of Correct Answer)

You are a reasoning trace analyst. Your role is to identify the
first sentence where the model gets the correct answer of the problem.
The goal is to identify the redundant overthinking process after the
model has actually solved the problem.

You will be given a full reasoning trace, which ends with a final
answer after the �</think>�tag; you will also be given the problem
and the correct answer. You must:

1. Only identify the sentence before the �</think>�tag.
2. Identify only the **first** sentence where the model gets the
correct answer.
3. The sentence you return should be **exactly the same** as the one
in the original reasoning trace.

Return only the sentence you identify, no extra commentary or
explanation.
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D.2 Reasoning Category Examples

Pivotal Reasoning Example

First, I need to figure out the ratio of the enrollments between
the two grades. The 7th grade has 520 students, and the 8th grade
has 650. So, the total number of students is 520 + 650. Let me
calculate that: 520 plus 650 is 1170. So, there are 1170 students
in total between the two grades.

Productive Elaboration & Calculation Example

Therefore, the number of representatives for each grade should be
proportional to their enrollment fractions. So, the 7th grade should
have (4/9) of 18 representatives, and the 8th grade should have (5/9)
of 18.

Exploring Alternatives Example

Hold on, maybe I need to think about the transversal lines and
corresponding angles. Since ST is parallel to QR, and PR is a
transversal, the angle at T, which is angle STR, should correspond
to angle QRP, which is angle R, 105 degrees.

Verification & Self-Correction Example

Wait, if ST is parallel to QR, then the corresponding angles when PR
is the transversal would be equal. So, angle S TR (which is angle
STR) should be equal to angle QRP, which is 105 degrees.

Non-Substantive Statement Example

Wait, maybe I’m confusing the angles. Let me try to think of it
differently.
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